Il livello di significatività $\alpha$ o errore di prima specie rappresenta la probabilità di rifiutare $H_0$ quando essa è vera ossia, $$\begin{eqnarray*} \alpha &=& P(\mbox{rifiutare }H_0|H_0\mbox{ vera})=P(\sqrt{10}(\overline{X}_n-5.5)>1.53|H_0)=\\ &=& P(\overline{X}_n>5.98|H_0)\stackrel{standard.}{=}P\left(Z>\frac{5.98-5.5}{\frac{1}{\sqrt{10}}}\right)=\\ &=&P(Z>1.52)=1-P(Z\leq 1.52)=1-0.9357=0.0643\end{eqnarray*}$$ Specifichiamo che la deviazione standard (radice quadrata della varianza) di $\overline{X}_n$ presente nella formula di standardizzazione è $\frac{1}{\sqrt{10}}$, infatti, dalle proprietà della varianza si ottiene: $$\begin{eqnarray*}Var(\overline{X}_n) &=& Var\left(\frac{X_1+\dots +X_n}{n}\right)=\\ &=& \frac{1}{n^2}Var(X_1+\dots +X_n)=\\ &=&\frac{1}{n^2}\cdot nVar(X_1)=\frac{1}{n}\end{eqnarray*}$$ Per $n=10$ si ha $Var(\overline{X}_n)=\frac{1}{10}$ e quindi la sua deviazione standard è $\frac{1}{\sqrt{10}}$.
La probabilità di commettere un errore di primo tipo $\alpha$ (chiamato anche livello di significatività) non è altro che la probabilità di rifiutare $H_0$ quando essa è vera. Calcoliamola seguendo la definizione: $$\begin{eqnarray*} \alpha &=& P(\mbox{rifiutare }H_0|H_0\mbox{ vera})=P(\sqrt{10}(\overline{T}_n-6.17) < -1.71|H_0)=\\ &=& P(\overline{T}_n < 5.63|H_0)\stackrel{standard.}{=}P\left(Z < \frac{5.63-6.17}{\frac{1}{\sqrt{10}}}\right)=\\ &=&P(Z < -1.708)=1-P(Z\leq 1.708)=1-0.9554=0.0446\end{eqnarray*}$$ Osserviamo che $X\sim N(\theta, 1)$, la sua media campionaria $\overline{X}_n$ si distribuisce secondo una normale di media $\theta=6.17$ e varianza $\frac{1}{n}=\frac{1}{10}$.
La probabilità di commettere un errore di secondo tipo $\beta$ non è altro che la probabilità di accettare $H_0$ quando essa è falsa. In base ai dati del testo otteniamo che: $$\begin{eqnarray*} \beta &=& P(\mbox{accettare }H_0|H_0\mbox{ falsa})=P(\sqrt{10}(\overline{T}_n-8.66) \geq -1.74|H_1)=\\ &=& P(\overline{T}_n \geq 8.11|H_1)\stackrel{standard.}{=}P\left(Z \geq \frac{8.11-8.27}{\frac{1}{\sqrt{10}}}\right)=\\ &=&P(Z \geq -0.51)=P(Z\leq 0.51)=0.6950\end{eqnarray*}$$ Ai fini dell'applicazione della formula di standardizzazione, dato che $X\sim N(\theta, 1)$, la sua media campionaria $\overline{X}_n$ si distribuisce secondo una normale di media $\theta=8.27$ e varianza $\frac{1}{n}=\frac{1}{10}$.
Eserciziari di Matematica Generale, Analisi I e II, Statistica, Fisica e Algebra Lineare