Questa che segue è una tipica applicazione del calcolo della densità di una variabile aleatorio tramite l'integrale di convoluzione.
Siano $T_1$ e $T_2$ i tempi di durata di due componenti in parallelo in un sistema disposti in modo sequenziale (quando si guasta uno dei due, inizia a funzionare l'altro). $T_1$ e $T_2$ hanno distribuzione esponenziale rispettivamente di parametri $\lambda_1$ e $\lambda_2$. Calcolare la densità di probabilità del tempo di durata totale $T$ del sistema.
Dato che sono in parallelo, l'intero sistema si guasta quando si rompono entrambi i componenti. Inoltre, il fatto che essi sono disposti in modo sequenziale, significa che quando si guasta uno dei due, allora inzia a funzionare l'altro. Di conseguenza, la durata totale del sistema è data dalla somma delle durate dei singolo componenti
$$T=T_1+T_2$$
Ovviamente $T_1$ e $T_2$ sono indipendenti perchè il funzionamento di un componente non influenza quello dell'altro.
Sapendo che le distribuzioni marginali di $T$ sono
$$f_1(t)=\begin{cases} \lambda_1 e^{-\lambda_1t} & \mbox{se } t>0\\ 0 & \mbox{se } t\le 0\end{cases}$$ $$f_2(z-t)=\begin{cases} \lambda_2 e^{-\lambda_2(z-t)} & \mbox{se } z-t>0\\ 0 & \mbox{se } z-t\le 0\end{cases}$$
calcoliamo la densità congiunta di $T$ mediante l'integrale di convoluzione
$$\begin{eqnarray}f_T(z)&=& \int_{-\infty}^{+\infty}f_1(t)f_2(z-t)\ dt=\\ &=&\int_0^z \lambda_1 e^{-\lambda_1t}\cdot\lambda_2 e^{-\lambda_2(z-t)}\ dt=\\ &=& e^{-\lambda_2z}\int_0^z\lambda_1\lambda_2 e^{-(\lambda_1-\lambda_2)t}\ dt=\\ &=& \frac{e^{-\lambda_2z}\lambda_1\lambda_2}{\lambda_1-\lambda_2}\int_0^z (\lambda_1-\lambda_2)e^{-(\lambda_1-\lambda_2)t}\ dt=\\ &=&\frac{e^{-\lambda_2z}\lambda_1\lambda_2}{\lambda_1-\lambda_2}\left(1-e^{-(\lambda_1-\lambda_2)z}\right)\end{eqnarray}$$
Eserciziari di Matematica Generale, Analisi I e II, Statistica, Fisica e Algebra Lineare